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A functional approach to scattering theory in quantum mechanics is developed 
by deriving an explicit functional expression for transition amplitudes. In applica- 
tions, the formalism avoids dealing with noncommutativity problems of 
operators, solving the Schr6dinger equation (or the integral equation of the 
Green's function), or dealing with the often quite complicated continual (path) 
integrals and, most importantly, applies to short- and long-range interactions. 
The basic idea is the use of the quantum action principle followed by a systematic 
analysis of the concept of an intervening source developed earlier in the study 
of stimulated emission. A comparison with the standard approach is also made. 

1. I N T R O D U C T I O N  

The purpose of this paper  is to derive an explicit functional expression 
for transition amplitudes for scattering in quantum mechanics. The method 
avoids dealing with noncommutativity properties of operators usually 
encountered. It avoids solving the Schr6dinger equation or its related 
integral for the Green's  function for each particular potential. It avoids 
dealing with the often complicated continual (Feynman and Hibbs, 1965; 
Duru and Kleinert, 1982; Manoukian,  1985) path integrals. And most 
importantly, it applies to short- and long-range (Dollard, 1964; Weinberg, 
1965; Schweber, 1973; Softer, 1983; Manoukian,  1984, 1985, 1986a) interac- 
tions. [By a long-range interaction one means a dynamics involving a 
potential that vanishes like O ( 1 / r )  or slower for l r ] - ~ . ]  For example, it 
avoids the difficulty encountered with the so-called infinite Dalitz phase 
factor in the Coulomb problem (Weinberg, 1965; Manoukian,  1986a). Our 
method uses the quantum action principle (Schwinger, 1951; see also 
Schwinger, 1960; Lam, 1965; Manoukian,  1985) or its modification 
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(Manoukian, 1985) followed by a systematic analysis of the concept of an 
intervening source arising in the study of stimulated emission carried out 
in an earlier paper (Manoukian, 1986b). In Section 2 the functional formal- 
ism is developed for short-range potentials and in Section 3 a comparison 
with the standard approach is made. Section 4 generalizes the method of 
Section 2 to a long-range interaction with an explicit application to the 
Coulomb problem. In the concluding section (Section 5) we spell out 
advantages of our formalism over the orthodox one. The extension of this 
work to quantum field theory will be attempted elsewhere. 

2. S H O R T - R A N G E  I N T E R A C T I O N S  

The Hamiltonian may be conveniently written in a second-quantized 
formalism [x ~ = t, x = (x ~ x)]: 

H(t)=f  d3x{d?*(x)[ V2 ] -d)*(x)K(x)} -From+ a V(x) j 6 (x) - K*(x)6(x) 
(1) 

where AV(x) is the potential, K(x) is an external c-number source of 
compact support in time, and 6K (x)/8K (x') = 84(x- x'). Scattering in and 
out states will be denoted (Manoukian, 1985), respectively, by ]gT'; O, A, K) 
and If T; O, A, K), where we eventually take T'--> -oo and T--> oo, to obtain 
for the latter Ig )=  Ig-oo; 0, 1, K) and If+) = [f+oo; 0, A, K). The quantum 
action principle (Schwinger, 1951, 1960; Lain, 1965; Manoukian, 1985)then 
reads 

(f+lg_) ",~ = i f (dx) 
0 8 6 

V(x) --k-~x) (f+l g_) K~. (2) 
0--A- 

where (dx)= dx ~ dx I dx 2 dx 3. Equation (2) is then integrated out with 
respect to A, to lead, for K =0, K * = 0 ,  to 

6 8 Ko . 

where (/§ = (f§ ~ and (f+lg_) ~'~ denotes (f§ K'~ with A set equal 
to zero and depends explicitly on the source K. In particular, for a particle 
with incoming and outgoing momenta pl and P2, respectively, we have 

(P2+'P~-)=exp[iA f (dx) 6~(x) V(x) ~,(x)](P2+'Pl-)K'~ 
(4) 

Hence the basic problem is to find the expression for (P2+ [Pl _)K.o, which 
depends explicitly on K. This will be obtained directly from our earlier 
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analysis (Manoukian, 1986b) of stimulated emission by an intervening 
source. To this end we write the external source as (Schwinger, 1970; 
Manoukian, 1986b) K(x) = Kl(X) + K2(x) + Ks(x), where Ka is an emission 
source and/s is a detection source switched on after the intervening source 
K2 is switched off, and K2 is switched on after Kl is switched off. The 
vacuum-to-vacuum transition amplitude for A = 0, in the nonrelativistic 
context, may be then written as 

(0+[0_)/( = (j=I~I (0+[0_)~)exp( iK*iK2)exp( iK*iKOexp( iK*iKO (5) 

where 

(0+10-)% = exp[ i  f (dx)(dx')K*(x)G~ 1 

=- exp(iK*G~ j = l, 2, 3 (6) 

O f d2k - ik~(x~ '~ xO>/,o i ( x -x ' ) ]  exp GO+(x_x ,) = ~ )  5 exp[ik " 2m ' (7) 
, X 0 ~ X rO 

f d3 k d3k ' 
iK*iK2 = (27r)3 (2Ir)3 iK*(k)[(2~)3B(k-k')]iK2(k ') (8) 

Kj(k) = Kj(k ~ k)lkO=~=/2m -- Kj(k)lko=k~/2., (9) 

Kj(k) = f (dx) e-i~'Kj(x) (10) 
d 

The amplitudes that the emission source K1 emits a particle with momentum 
kl and the detection source Ks detects it with a momentum k2 are given, 
respectively, by (Schwinger, 1970; Manoukian, 1986b) 

r d 3 p l ]  1/2 
(p~]0-)K~ = (0+t0-) K~ L ~ j S ]  iK,(p0 (11) 

(0+[Pz)K3 = (0+[0-)K3 l ~ - ~ J  iK*(p2) (12) 

A unitarity expansion of (0+]0_) K in (5) with respect to the sources K1, K2, 
K3, as arranged causally, then leads (Manoukian, 1986b) from (5) and (8) 
for 

(0+]p2 -4- )K~(p 2-4- IP, - )K~(p~ _ I0_)K, 
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to the expression 

(j__.l~I1 (0+[0-) Kj) d3p, d3p2 (2~)  3 (2r 3 iK~f(P2)E(27r)36(p2-P') 

+ iKz(p2)iK*(p,)]iKl(Pl) 

From (11) and (12) we then obtain (A =0)  

F d3p21~/2[ d3pl l '/2 
(P=+ IP,-)K~ = k ~ - ~ j  k~-~sj 

X [(27r)38(p, -- P2) + iK2(P2)iK*(p,)](0+I0-) ~: 

Using this expression in (4), we obtain for the transition amplitude 

(p2+lpl-)=exp iX (dx) 8--~- ~ V(x) 

X [ (2" f f )3 t~3 (p  I - -  P2)  

+ [ (dx)(dx') e -ip2" e ip~x' iK(x)iK*(x')](O+tO_)KIK=o, 1(*=o 
d 

(13) 

(14) 

(15) 

with px = p �9 x -p~176 pO = pZ/2m, i = 1, 2, and 

[ a~p' l lj= r d3p2 "]I/2 
(P2+lP'-) (16) 

Equation (15) is an explicit expression for transition amplitudes for 
short-range interaction, obtained by taking functional derivatives, and will 
be generalized for long-range interactions in Section 4. We note that for 
A = 0 we satisfy the consistency relation (P2  "~ IPl - -  ) = (27r)383(Pa - -  P2). Other 
expressions for (P2+lPl - ) ,  as obtained from (15), are given in the next 
section. 

3. C O M P A R I S O N  WITH THE S T A N D A R D  A P P R O A C H  

By using the translational operation 

exp f (dx) f ( x )  6 /SK(x )F[K]  = F[K + f ]  

for an arbitrary functional F[K] of K, we obtain, in reference to equation 
(15), 

exp i A - ~  V K(x)K*(x')  exp iK*G~ 
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6 6 
x exp iA V K ~K* exp iK*G~ =o. K*=o 

= C iA V(x') 6 4 ( x - x ' ) -  A2 V(x)V(x') ~K~(x') 6K*(x) 

x exp iK*G+KiK=o, K*:0 (17) 

where C is a constant, independent of K and K*, giving rise to the so-called 
closed loops, and G§ denotes the exact Green's function satisfying 

[ - iO- 2m V2 +AV(x)] G+(x-x')=64(x-x') 
(18) 

I ] I077 2m t-aV(x') G+(x-x')= 64(x-x ') 

We note, in particular, that the first term iaV(x')64(x-x ') in the square 
brackets on the right-hand side of (17) gives the classic Born term to the 
transition amplitude. Upon using (18), we obtain for the right-hand side of 
(17) 

iC -i  ~ 4 ( x - x ' ) -  -1-----111-2~,---I  G(x, x') (19) Ot ~m Ot 2m/\  Ot 2m/ 
When we replace (19) in (15), the first term in the square brackets in (19) 
gives zero contribution, thus leading to the connected amplitude, not involv- 
ing the irrrelevant closed loops, and the familiar expression 

(P2+[P ' - )c  = [ (2rr)3t~3(p'-p2) + i f ( dx)(dx')e-ip2xeip'x' 

/ .e v2~/ .o  v '2] x')] (20) 

involving the exact Green's function. 
Another useful representation for (P2 + IP~-) as obtained from (20) is 

obtained by writing 

f d3k G(k, x~ k', x '~ exp(ik-  x) exp( - ik '  �9 x') (21) 
d3k 

G(x, x') = (2~r) 3 (2~)' 

and using explicitly the boundary condition G( . ,  x ~ ., x '~ = 0 for x ~  x '~ 
and hence, in particular, the conditions 

lim G ( . , x ~  ., T ' )=0 ,  lim G ( . , - T ; . , x  '~ 
T'-+ l e o  T ~ e o  
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and the mass shell conditions p~ i = 1, 2, leading to the familiar 
expression 

(P2+ [Pl - ) c  = [(2~r) 3 63(pl-Pz) - i lira lim exp(ipET/2m) 
T~o~ T'~--cx~ 

x G(p2, T; Pl T') exp(-ip~T'/2m) (22) 

3. L O N G - R A N G E  I N T E R A C T I O N S  

The scattering states [gT'; 0, A, K) and If T; O, A, K) develop in time 
via a unitary operator U(t, A, K) 

U(t, A, K)lgT';  0, A, K) = IgT'; t, A, K) (23) 

U( t, ~, K ) I fT ;  O, A, K) = ]fT; t, A, K) (24) 
Asymptotically, for t ~ T', T' ~ - oo, 

IgT'; t, A, g) -~  Uo(T', A)ig) (25) 

where, for long-range interactions, the unitary operator U0(T', A) still 
depends on the quantum mechanical coupling A (Dollard, 1964; Softer, 
1983; Manoukian, 1985) and is not simply given by exp(-iT'Ho), where 
Ho is the free Hamiltonian. It is, however, independent of K(x) due to the 
compact support nature of K(x), for which we choose K(x) to vanish for 
x~  T' and x~  T. If we denote 

Uo(t, A) U*o(t, A + 6A) = 1 + i~AG(t, A, ~b*, 6)  (26) 

then with 

If T; O, A K)=-If T; A, K), IgT'; 0, A, K)=-IgT'; A, K) 

the modified quantum action principle reads (Manoukian, 1985) 

0 
~ ( f r ;  A, glgT'; A, K) 

i . 6  t 6  6 8 

x i (ax) ~ V(x) ~ (fr;  A, Klgr'; a, K) 
T " <  x 0<. T 

which, upon integration over A, gives 
OCT; A, KIgT', A, K) 

i 6 . 6 - i ~ - - ~  6 _ ' 6 _ ~  - G  T' ,A' ,- t~--~,  = e x p i  dA' G T,A' , - i --~,  

I 6 V 6 x exp iA (dx) ~ (x) ~ ( f T ;  O, KIgT'; O, K) (27) 
T ' < x O <  T ol~'tx ) 
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In particular, for a particle with ingoing and outgoing momenta Pl and P2, 
respectively, we have 

(p2T; A, Kip1T'; A, K) 

= exp iA '<x~ (dx) V(x) 8K*(x) 

•  dA' G T,A' , - i - -~,  

i T" 
6 6 \ ' ]  

- G  T' ,A' ,- i-~-~,-  --k--~)J(p2,0, KlpaT';O,K) (28) 

The method of obtaining G(t,A, .) is well known (Dollard, 1964; 
Dollard and Velo, 1966; Papanicolaou, 1974; Manoukian, 1985, 1986a) and 
very simple. We consider the expression 

(pzT; 0, KI dA' G r ' ,  A', -i~-K-, 

Asymptotically for T '~  -co the particle is essentially free with momentum 
p~ and hence we have ]x/T' I ~ Ip~]/m. Therefore, if we formally replace x 
in V(x) for Ix[~oo by T'p~/m 

I: dt V(tpdm)-~ d~' G(T', A; -i6/6K; -i6/6K*) (30) 

leading to the amplitude 

(p2T; A, Klplr ' ;  A, K) 

= exp iA JT (dx) 
6 

'<x~ ~ V6K*(x------- ~ 

x exp i dt V - dt V (pzT; 0, K[p~T'; O, K) (31) 

Or, in its final form, we have 

[i (p2+]p~-) = lim lim exp i dt V - dt 
T ' o - - o o  T ~ o o  

x exp ia dx~--~-~x ) V(x) 6K*(x-----~ 

x [ (2~r )36 (p l -p2 )+ f (dx ) f  (dx')e-iP~Xe 'p,x 
T'<x'O< T 
T '<xO<T 

x iK (x)iK*(x')] (0+10_)x I K =o, •*=o (32) 
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Equation (32) is our final expression for the transition amplitude for long- 
(and short-) range interactions. We first check that (32) coincides with (15) 
for short-range interactions defined by V(x)= O([x I-1-~) with 6 > 0. This 
gives 

;, V(tp/m) = O(Itl-'-~), at V(tp/m)= O(Itl-~)+ 0 

and hence the correction terms (surface terms) in (32) do not contribute. 
Now we apply (32) to Coulomb scattering. Here V(x)=e~e2/lx[. 

Accordingly, 

f r V(tp/m) = (sgn T)(e~e2m/lp]) In] T] (33) dt 

giving 

( p 2 + l p , - ) =  lim lim l" [ .  /lnITt lnIT']\'] 

xexpia (dx) 6 3 [  3 '<x~ ~ V(x) 6--k- ~ (2~r) 6(p,-p2) 

+ fT,< ,o<, (ax) f e-"~ e'~'qK(x)iK*(x')] 
T'<x~ T 

x (0+10_) ~ IK =o, K*=o (34) 

By an analysis similar to the one leading to (22), this may be rewritten as 

(P2+IP'-)c = r'-~-~lim lira exp "te,e2m~-~+--~-)/lnlT[ lnlT']\ 

ip~T -ip~T'] 
X ( 2 7 r ) 3 6 ( p l  - -  P2) - -  i exp ~ G(p2, T; Pt, T') exp ~ j  

(35) 

When smeared with a test function in Pl and P2, the first term on the 
right-hand side of (35) will vanish by the Riemann-Lebesgue lemma for 
I T[, [T'[ ~ ~o. That is, in the sense of generalized functions, we may write 

ip~T iele2m lnlTI 
( P 2 + I P l - ) c = - i  r,+-oolim r+~lim exp-~m exp Ip=l 

ip2T ' ielelm ln[ r ' [ ]  
x G(p2, T; p,, T') exp ~ exp ~lT J (36) 
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The double limit T ' ~ - o o ,  T-->oo in (36) exists and has been studied in 
detail by Papanicolaou (1974), obtained by completely different methods, 
and leads to an infrared finite expression (see also Manoukian,  1986a) 
without the so-called infinite Dalitz phase factor. 

5. C O N C L U S I O N S  

The functional expressions for transition amplitudes in (15) and (32) 
are quite general. Equation (32) is applicable to long-range interactions, 
thus avoiding infrared singularity problems. They avoid dealing with non- 
commutativity properties of  operators and do not even involve the so-called 
creation and annihilation operators, as they give directly the expressions 
for the amplitudes with no additional work involved with operators. They 
avoid complications encountered with continual integrals, as they already 
give the solution to the latter in terms of functional differentiations. They 
do not involve explicitly the full Green's  function and hence are suitable 
for perturbative treatments without having to go back to the integral equation 
of  the Green 's  function. This approach will be generalized to quantum field 
theory and especially to gauge theories in a future report. 
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